Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurodegener ; 19(1): 32, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581053

RESUMO

BACKGROUND: Ageing is the principal risk factor for retinal degenerative diseases, which are the commonest cause of blindness in the developed countries. These conditions include age-related macular degeneration or diabetic retinopathy. Regulatory T cells play a vital role in immunoregulation of the nervous system by limiting inflammation and tissue damage in health and disease. Because the retina was long-considered an immunoprivileged site, the precise contribution of regulatory T cells in retinal homeostasis and in age-related retinal diseases remains unknown. METHODS: Regulatory T cells were selectively depleted in both young (2-4 months) and aged (18-23 months) FoxP3-DTR mice. We evaluated neuroretinal degeneration, gliosis, subretinal space phagocyte infiltration, and retinal pigmented epithelium morphology through immunofluorescence analysis. Subsequently, aged Treg depleted animals underwent adoptive transfer of both young and aged regulatory T cells from wild-type mice, and the resulting impact on neurodegeneration was assessed. Statistical analyses employed included the U-Mann Whitney test, and for comparisons involving more than two groups, 1-way ANOVA analysis followed by Bonferroni's post hoc test. RESULTS: Our study shows that regulatory T cell elimination leads to retinal pigment epithelium cell dysmorphology and accumulation of phagocytes in the subretinal space of young and aged mice. However, only aged mice experience retinal neurodegeneration and gliosis. Surprisingly, adoptive transfer of young but not aged regulatory T cells reverse these changes. CONCLUSION: Our findings demonstrate an essential role for regulatory T cells in maintaining age retinal homeostasis and preventing age-related neurodegeneration. This previously undescribed role of regulatory T cells in limiting retinal inflammation, RPE/choroid epithelium damage and subsequently photoreceptor loss with age, opens novel avenues to explore regulatory T cell neuroprotective and anti-inflammatory properties as potential therapeutic approaches for age-related retinal diseases.


Assuntos
Degeneração Macular , Linfócitos T Reguladores , Camundongos , Animais , Gliose , Retina , Inflamação
2.
Nat Commun ; 15(1): 1870, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467607

RESUMO

Myelin regeneration (remyelination) is essential to prevent neurodegeneration in demyelinating diseases such as Multiple Sclerosis, however, its efficiency declines with age. Regulatory T cells (Treg) recently emerged as critical players in tissue regeneration, including remyelination. However, the effect of ageing on Treg-mediated regenerative processes is poorly understood. Here, we show that expansion of aged Treg does not rescue age-associated remyelination impairment due to an intrinsically diminished capacity of aged Treg to promote oligodendrocyte differentiation and myelination in male and female mice. This decline in regenerative Treg functions can be rescued by a young environment. We identified Melanoma Cell Adhesion Molecule 1 (MCAM1) and Integrin alpha 2 (ITGA2) as candidates of Treg-mediated oligodendrocyte differentiation that decrease with age. Our findings demonstrate that ageing limits the neuroregenerative capacity of Treg, likely limiting their remyelinating therapeutic potential in aged patients, and describe two mechanisms implicated in Treg-driven remyelination that may be targetable to overcome this limitation.


Assuntos
Remielinização , Humanos , Masculino , Feminino , Camundongos , Animais , Idoso , Remielinização/fisiologia , Linfócitos T Reguladores/metabolismo , Oligodendroglia/fisiologia , Diferenciação Celular/fisiologia , Bainha de Mielina/metabolismo , Envelhecimento , Sistema Nervoso Central
3.
Mol Neurodegener ; 16(1): 9, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602265

RESUMO

BACKGROUND: We generated a mouse model of primary microglial dysfunction by deleting two negative immune regulatory genes, Cx3cr1 and Socs3 (in LysM+ cells). This study aimed to understand how primary microglial dysfunction impacts retinal neurons during aging. METHODS: The LysMCre-Socs3fl/flCx3cr1gfp/gfp double knockout (DKO), LysMCre-Socs3fl/fl, Cx3cr1gfp/gfp and Socs3fl/fl mice were maintained up to 12 months. Eyes were collected and processed for immunohistochemistry of IBA-1, cone arrestin, secretagogin, PKCα and GABA. Brain microglia from DKO and WT mice were stimulated with LPS + IFN-γ or IL-4. The expression of TNF-α, IL-1ß, IL-6, iNOS, IL-12p40, IL-23p19, CCL2, CCL5, CXCL2, IL-10, CD206 and Arg1 were examined by qRT-PCR and protein production was measured by Luminex assay. Retinal explants from C57BL/6 J mice were co-cultured with microglia from DKO or WT mice for 24 h, after which the number of cone arrestin+ cells in retinal flatmount were quantified. RESULTS: In 3-5 month old mice, the number of microglia in retinal ganglion cell layer (GCL) and inner plexiform layer (IPL) were comparable in all strains of mice. The DKO mice had a significantly higher number of microglia in the outer plexiform layer (OPL) but significantly lower numbers of cone arrestin+, secretagogin+ and GABA+ cells compared to Socs3fl/fl and single KO mice. During aging, 57% of the DKO mice died before 12 months old. The 10-12 months old DKO mice had significantly higher numbers of microglia in GCL/IPL and OPL than age-matched Socs3fl/fl and single KO mice. The aged DKO mice developed retinal pigment epithelial (RPE) dysmorphology accompanied by subretinal microglial accumulation. The number of photoreceptors, bipolar cells (Secretagogin+ or PKCα+) and GABA+ amacrine cells was significantly lower in aged DKO mice compared to age-matched Socs3fl/fl and single KO mice. Microglia from DKO mice showed significantly higher levels of phagocytic activity and produced higher levels of TNF-α, IL-6, CCL2, CCL5, CXCL2 and CXCL10 compared to microglia from Socs3fl/fl mice. Co-culture of retinal explants with LPS + IFN-γ or IL-4 pre-treated DKO microglia significantly reduced cone photoreceptor survival. CONCLUSIONS: The LysMCre-Socs3fl/flCx3cr1gfp/gfp DKO mice displayed primary microglial dysfunction and developed age-related retinal microgliopathy characterized by aggragated microglial activation and multiple retinal neuronal and RPE degeneration. TRIAL REGISTRATION: Not applicable. The article does not contain any results from human participants.


Assuntos
Fatores Etários , Receptor 1 de Quimiocina CX3C/metabolismo , Retina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Animais , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia/metabolismo , Retina/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Ganglionares da Retina/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(30): 18018-18028, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32651278

RESUMO

CCN3 is a matricellular protein that promotes oligodendrocyte progenitor cell differentiation and myelination in vitro and ex vivo. CCN3 is therefore a candidate of interest in central nervous system (CNS) myelination and remyelination, and we sought to investigate the expression and role of CCN3 during these processes. We found CCN3 to be expressed predominantly by neurons in distinct areas of the CNS, primarily the cerebral cortex, hippocampus, amygdala, suprachiasmatic nuclei, anterior olfactory nuclei, and spinal cord gray matter. CCN3 was transiently up-regulated following demyelination in the brain of cuprizone-fed mice and spinal cord lesions of mice injected with lysolecithin. However, CCN3-/- mice did not exhibit significantly different numbers of oligodendroglia or differentiated oligodendrocytes in the healthy or remyelinating CNS, compared to WT controls. These results suggest that despite robust and dynamic expression in the CNS, CCN3 is not required for efficient myelination or remyelination in the murine CNS in vivo.


Assuntos
Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes/etiologia , Regulação da Expressão Gênica , Proteína Sobre-Expressa em Nefroblastoma/genética , Remielinização/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Imunofluorescência , Camundongos , Bainha de Mielina/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia
5.
Proc Natl Acad Sci U S A ; 116(50): 25311-25321, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31740610

RESUMO

The microbiota is now recognized as a key influence on the host immune response in the central nervous system (CNS). As such, there has been some progress toward therapies that modulate the microbiota with the aim of limiting immune-mediated demyelination, as occurs in multiple sclerosis. However, remyelination-the regeneration of myelin sheaths-also depends upon an immune response, and the effects that such interventions might have on remyelination have not yet been explored. Here, we show that the inflammatory response during CNS remyelination in mice is modulated by antibiotic or probiotic treatment, as well as in germ-free mice. We also explore the effect of these changes on oligodendrocyte progenitor cell differentiation, which is inhibited by antibiotics but unaffected by our other interventions. These results reveal that high combined doses of oral antibiotics impair oligodendrocyte progenitor cell responses during remyelination and further our understanding of how mammalian regeneration relates to the microbiota.


Assuntos
Sistema Nervoso Central/fisiopatologia , Microbioma Gastrointestinal , Esclerose Múltipla/imunologia , Esclerose Múltipla/microbiologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/efeitos adversos , Diferenciação Celular/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/fisiopatologia , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Probióticos/administração & dosagem , Remielinização/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
6.
mSphere ; 3(3)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29743202

RESUMO

Characterization of human measles cases is essential in order to better assess the data generated in model systems of morbillivirus infection. To this end, we collected formalin-fixed tissue samples from 23 natural measles cases from different areas in the world and different phases of disease ranging from prodromal and acute measles to a persistent infection in an immunocompromised subject. We show that the vast majority of measles virus (MV)-infected cells in epithelia were intraepithelial immune cells that were, in most cases, positive for the CD11c myeloid cell marker. Small numbers of measles virus-infected cytokeratin-positive epithelial cells were also detected in bronchial and appendix epithelia. Dissolution and disruption of uninfected and MV-infected alveolar and bronchial epithelia were prominent features of the measles cases, especially in the established and late phases of the disease. In some instances, this was associated with the formation of MV-infected multinucleated giant cells which expressed CD11c and/or macrophage cell marker 68, a pathological feature also prominently observed in closely associated mucosa-associated lymphoid tissue. Collectively, these data show that resident and inflammatory infiltrating immune cells alter the architecture of respiratory tract epithelia and highlight the necessity for additional research into the function(s) and expression of nectin-4 in human tissues.IMPORTANCE We have brought together a unique collection of 23 human cases of measles infection and studied the types of cells that are infected. This work has not been done with modern technologies such as double labeling with antibodies and confocal microscopy in human cases primarily due to the fact that it is difficult to obtain the material because, fortunately, measles is fatal in only a very small fraction of infected patients. During the past decades, the receptors for measles virus have been elucidated and monkey models have been developed. We found that, in most cases, independently of whether the tissues were obtained early or later in the infection, the primary cell types that were infected were those of the immune system such as lymphocytes, macrophages, and dendritic cells. A very small number of epithelial cells were also found to be infected.


Assuntos
Células Dendríticas/virologia , Células Gigantes/virologia , Macrófagos/virologia , Sarampo/virologia , Morbillivirus/crescimento & desenvolvimento , Mucosa Respiratória/virologia , Adolescente , Idoso , Antígeno CD11c/análise , Criança , Pré-Escolar , Células Dendríticas/química , Feminino , Células Gigantes/química , Humanos , Lactente , Macrófagos/química , Masculino , Sarampo/patologia , Mucosa Respiratória/patologia
7.
Nat Neurosci ; 20(5): 674-680, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28288125

RESUMO

Regeneration of CNS myelin involves differentiation of oligodendrocytes from oligodendrocyte progenitor cells. In multiple sclerosis, remyelination can fail despite abundant oligodendrocyte progenitor cells, suggesting impairment of oligodendrocyte differentiation. T cells infiltrate the CNS in multiple sclerosis, yet little is known about T cell functions in remyelination. We report that regulatory T cells (Treg) promote oligodendrocyte differentiation and (re)myelination. Treg-deficient mice exhibited substantially impaired remyelination and oligodendrocyte differentiation, which was rescued by adoptive transfer of Treg. In brain slice cultures, Treg accelerated developmental myelination and remyelination, even in the absence of overt inflammation. Treg directly promoted oligodendrocyte progenitor cell differentiation and myelination in vitro. We identified CCN3 as a Treg-derived mediator of oligodendrocyte differentiation and myelination in vitro. These findings reveal a new regenerative function of Treg in the CNS, distinct from immunomodulation. Although the cells were originally named 'Treg' to reflect immunoregulatory roles, this also captures emerging, regenerative Treg functions.


Assuntos
Encéfalo/fisiologia , Bainha de Mielina/fisiologia , Regeneração/fisiologia , Linfócitos T Reguladores/fisiologia , Animais , Encéfalo/ultraestrutura , Diferenciação Celular/fisiologia , Feminino , Masculino , Camundongos , Proteína Sobre-Expressa em Nefroblastoma/fisiologia , Oligodendroglia/fisiologia , Células-Tronco/fisiologia
8.
J Transl Med ; 13: 330, 2015 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-26476672

RESUMO

BACKGROUND: The wingless-type MMTV integration site (Wnt) signaling is a group of signal transduction pathways. In canonical Wnt pathway, Wnt ligands bind to low-density lipoprotein receptor-related protein 5 or 6 (LRP5 or LRP6), resulting in phosphorylation and activation of the receptor. We hypothesize that canonical Wnt pathway plays a role in the retinal lesion of age-related macular degeneration (AMD), a leading cause of irreversible central visual loss in elderly. METHODS: We examined LRP6 phosphorylation and Wnt signaling cascade in human retinal sections and plasma kallistatin, an endogenous inhibitor of the Wnt pathway in AMD patients and non-AMD subjects. We also used the Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 and Ccl2 (-/-) /Cx3cr1 (gfp/gfp) mouse models with AMD-like retinal degeneration to further explore the involvement of Wnt signaling activation in the retinal lesions in those models and to preclinically evaluate the role of Wnt signaling suppression as a potential therapeutic option for AMD. RESULTS: We found higher levels of LRP6 (a key Wnt signaling receptor) protein phosphorylation and transcripts of the Wnt pathway-targeted genes, as well as higher beta-catenin protein in AMD macula compared to controls. Kallistatin was decreased in the plasma of AMD patients. Retinal non-phosphorylated-ß-catenin and phosphorylated-LRP6 were higher in Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 mice than that in wild type. Intravitreal administration of an anti-LRP6 antibody slowed the progression of retinal lesions in Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 and Ccl2 (-/-) /Cx3cr1 (gfp/gfp) mice. Electroretinography of treated eyes exhibited larger amplitudes compared to controls in both mouse models. A2E, a retinoid byproduct associated with AMD was lower in the treated eyes of Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 mice. Anti-LRP6 also suppressed the expression of Tnf-α and Icam-1 in Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 retinas. CONCLUSIONS: Wnt signaling may be disturbed in AMD patients, which could contribute to the retinal inflammation and increased A2E levels found in AMD. Aberrant activation of canonical Wnt signaling might also contribute to the focal retinal degenerative lesions of mouse models with Ccl2 and Cx3cr1 deficiency, and intravitreal administration of anti-LRP6 antibody could be beneficial by deactivating the canonical Wnt pathway.


Assuntos
Regulação da Expressão Gênica , Degeneração Macular/sangue , Proteínas Wnt/metabolismo , Idoso , Envelhecimento , Animais , Receptor 1 de Quimiocina CX3C , Quimiocina CCL2/genética , Modelos Animais de Doenças , Eletrorretinografia , Feminino , Humanos , Injeções Intravítreas , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Degeneração Macular/metabolismo , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Fosforilação , Receptores de Quimiocinas/genética , Retina/metabolismo , Degeneração Retiniana , Serpinas/sangue , Transdução de Sinais
9.
PLoS One ; 9(5): e97970, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24848689

RESUMO

Retinal neurodegeneration is a key component of diabetic retinopathy (DR), although the detailed neuronal damage remains ill-defined. Recent evidence suggests that in addition to amacrine and ganglion cell, diabetes may also impact on other retinal neurons. In this study, we examined retinal degenerative changes in Ins2Akita diabetic mice. In scotopic electroretinograms (ERG), b-wave and oscillatory potentials were severely impaired in 9-month old Ins2Akita mice. Despite no obvious pathology in fundoscopic examination, optical coherence tomography (OCT) revealed a progressive thinning of the retina from 3 months onwards. Cone but not rod photoreceptor loss was observed in 3-month-old diabetic mice. Severe impairment of synaptic connectivity at the outer plexiform layer (OPL) was detected in 9-month old Ins2Akita mice. Specifically, photoreceptor presynaptic ribbons were reduced by 25% and postsynaptic boutons by 70%, although the density of horizontal, rod- and cone-bipolar cells remained similar to non-diabetic controls. Significant reductions in GABAergic and glycinergic amacrine cells and Brn3a+ retinal ganglion cells were also observed in 9-month old Ins2Akita mice. In conclusion, the Ins2Akita mouse develops cone photoreceptor degeneration and the impairment of synaptic connectivity at the OPL, predominately resulting from the loss of postsynaptic terminal boutons. Our findings suggest that the Ins2Akita mouse is a good model to study diabetic retinal neuropathy.


Assuntos
Retinopatia Diabética/patologia , Neurônios Retinianos/patologia , Sinapses/patologia , Animais , Diabetes Mellitus Tipo 1/complicações , Retinopatia Diabética/complicações , Eletrorretinografia , Masculino , Camundongos , Fatores de Tempo
10.
PLoS One ; 8(4): e61381, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637822

RESUMO

Previous studies have shown that CCL2/CX3CR1 deficient mice on C57BL/6N background (with rd8 mutation) have an early onset (6 weeks) of spontaneous retinal degeneration. In this study, we generated CCL2(-/-)CX3CR1(GFP/GFP) mice on the C57BL/6J background. Retinal degeneration was not detected in CCL2(-/-)CX3CR1(GFP/GFP) mice younger than 6 months. Patches of whitish/yellowish fundus lesions were observed in 17∼60% of 12-month, and 30∼100% of 18-month CCL2(-/-)CX3CR1(GFP/GFP) mice. Fluorescein angiography revealed no choroidal neovascularisation in these mice. Patches of retinal pigment epithelium (RPE) and photoreceptor damage were detected in 30% and 50% of 12- and 18-month CCL2(-/-)CX3CR1(GFP/GFP) mice respectively, but not in wild-type mice. All CCL2(-/-)CX3CR1(GFP/GFP) mice exposed to extra-light (∼800lux, 6 h/day, 6 months) developed patches of retinal atrophy, and only 20-25% of WT mice which underwent the same light treatment developed atrophic lesions. In addition, synaptophysin expression was detected in the outer nucler layer (ONL) of area related to photoreceptor loss in CCL2(-/-)CX3CR1(GFP/GFP) mice. Markedly increased rhodopsin but reduced cone arrestin expression was observed in retinal outer layers in aged CCL2(-/-)CX3CR1(GFP/GFP) mice. GABA expression was reduced in the inner retina of aged CCL2(-/-)CX3CR1(GFP/GFP) mice. Significantly increased Müller glial and microglial activation was observed in CCL2(-/-)CX3CR1(GFP/GFP) mice compared to age-matched WT mice. Macrophages from CCL2(-/-)CX3CR1(GFP/GFP) mice were less phagocytic, but expressed higher levels of iNOS, IL-1ß, IL-12 and TNF-α under hypoxia conditions. Our results suggest that the deletions of CCL2 and CX3CR1 predispose mice to age- and light-mediated retinal damage. The CCL2/CX3CR1 deficient mouse may thus serve as a model for age-related atrophic degeneration of the RPE, including the dry type of macular degeneration, geographic atrophy.


Assuntos
Quimiocina CCL2/deficiência , Degeneração Macular/patologia , Receptores de Citocinas/deficiência , Receptores de HIV/deficiência , Retina/fisiologia , Degeneração Retiniana/patologia , Animais , Receptor 1 de Quimiocina CX3C , Quimiocina CCL2/genética , Proteínas de Fluorescência Verde/metabolismo , Luz , Macrófagos/fisiologia , Degeneração Macular/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose/fisiologia , Receptores de Citocinas/genética , Receptores de HIV/genética , Retina/patologia
11.
Invest Ophthalmol Vis Sci ; 54(1): 682-90, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23299473

RESUMO

PURPOSE: To investigate the role of the Fractalkine receptor CX3CR1 pathway in oxidative insults-mediated retinal degeneration and immune activation. METHODS: A prooxidant, paraquat (0.75 µM) was injected into the vitreous of C57BL/6J, CX3CR1(gpf/+), and CX3CR1(gfp/gfp) mice. Retinal lesions were investigated clinically by topic endoscopic fundus imaging and fluorescence angiography, and pathologically by light- and electron microscopy. Retinal immune gene expression was determined by real-time RT-PCR. Microglial activation and immune cell infiltration were examined by confocal microscopy of retinal flatmounts. RESULTS: Intravitreal injection of paraquat (0.75 µM) resulted in acute retinal capillary nonperfusion within 2 days, which improved from 4 days to 4 weeks postinjection (p.i.). Panretinal degeneration was observed at 4 days p.i. and progressed further at 4 weeks p.i. In the absence of CX3CR1, retinal degeneration was exaggerated and was accompanied by increased TNF-α, iNOS, IL-1ß, Ccl2, and Casp-1 gene expression. Confocal microscopy of retinal flatmounts revealed microglial activation and CD44(+)MHC-II(+) monocyte and GR1(+) neutrophil infiltration in paraquat-injected eyes. The number of activated microglia and infiltrating leukocytes was significantly higher in CX3CR1(gfp/gfp) mice than in CX3CR1(gfp/+) mice. CONCLUSIONS: Our results suggest that the CX3CR1 signaling pathway may play an important role in controlling retinal inflammation under oxidative and ischemia/reperfusion conditions. In the absence of CX3CR1, uncontrolled retinal inflammation results in exaggerated retinal degeneration.


Assuntos
DNA/genética , Regulação da Expressão Gênica , Receptores de Quimiocinas/genética , Retina/patologia , Degeneração Retiniana/induzido quimicamente , Retinite/etiologia , Animais , Receptor 1 de Quimiocina CX3C , Modelos Animais de Doenças , Angiofluoresceinografia , Fundo de Olho , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Estresse Oxidativo , Paraquat/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Quimiocinas/biossíntese , Receptores de Quimiocinas/deficiência , Retina/metabolismo , Degeneração Retiniana/complicações , Degeneração Retiniana/genética , Retinite/genética , Retinite/metabolismo , Transdução de Sinais
12.
Glia ; 60(5): 833-42, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22362506

RESUMO

Previous studies have shown that following whole-body irradiation bone marrow (BM)-derived cells can migrate into the central nervous system, including the retina, to give rise to microglia-like cells. The detailed mechanism, however, remains elusive. We show in this study that a single-dose whole-body γ-ray irradiation (8 Gy) induced subclinical damage (i.e., DNA damage) in the neuronal retina, which is accompanied by a low-grade chronic inflammation, para-inflammation, characterized by upregulated expression of chemokines (CCL2, CXCL12, and CX3CL1) and complement components (C4 and CFH), and microglial activation. The upregulation of chemokines CCL2 and CXCL12 and complement C4 lasted for more than 160 days, whereas the expression of CX3CL1 and CFH was upregulated for 2 weeks. Both resident microglia and BM-derived phagocytes displayed mild activation in the neuronal retina following irradiation. When BM cells from CX3CR1(gfp/+) mice or CX3CR1(gfp/gfp) mice were transplanted to wild-type C57BL/6 mice, more than 90% of resident CD11b(+) cells were replaced by donor-derived GFP(+) cells after 6 months. However, when transplanting CX3CR1(gfp/+) BM cells into CCL2-deficient mice, only 20% of retinal CD11b(+) cells were replaced by donor-derived cells at 6 month. Our results suggest that the neuronal retina suffers from a chronic stress following whole-body irradiation, and a para-inflammatory response is initiated, presumably to rectify the insults and maintain homeostasis. The recruitment of BM-derived myeloid cells is a part of the para-inflammatory response and is CCL2 but not CX3CL1 dependent.


Assuntos
Células da Medula Óssea/metabolismo , Quimiocina CCL2/fisiologia , Mediadores da Inflamação/fisiologia , Células Mieloides/metabolismo , Retina/metabolismo , Irradiação Corporal Total/efeitos adversos , Animais , Células da Medula Óssea/patologia , Células da Medula Óssea/efeitos da radiação , Quimiocina CCL2/efeitos da radiação , Quimiocina CXCL1/fisiologia , Mediadores da Inflamação/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/patologia , Células Mieloides/efeitos da radiação , Retina/patologia , Retina/efeitos da radiação
13.
J Neurochem ; 94(1): 45-56, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15953348

RESUMO

Corticotropin-releasing factor (CRF) mediates various aspects of the stress response. To differentiate between the roles of CRF(1) and CRF(2) receptor subtypes in monoaminergic neurotransmission, hypothalamic-pituitary-adrenocortical axis activity and behaviour we compared the effects of CRF and urocortin 1 with those of the selective CRF(2) receptor ligands urocortin 2 and urocortin 3. In vivo microdialysis in the rat hippocampus was used to assess free corticosterone, extracellular levels of serotonin (5-HT) and noradrenaline (NA), and their metabolites 5-hydroxyindoleacetic acid (5-HIAA) and 3-methoxy-4-hydroxyphenylglycol (MHPG), respectively. Intracerebroventricular (i.c.v.) injection of CRF and urocortin 1, 2 and 3 (1.0 microg) increased hippocampal levels of 5-HT and 5-HIAA. CRF and urocortin 1 increased NA and MHPG, whereas urocortin 2 and urocortin 3 elevated MHPG, but not NA levels. CRF and the urocortins induced an immediate increase in behavioural activity. CRF and urocortin 1 mainly caused grooming and exploratory behaviour. In contrast, urocortin 2 and urocortin 3 both induced exploratory behaviour, but not grooming, and increased time spent eating food pellets. All urocortins, but not CRF, suppressed food intake 4-6 h after injection. Hippocampal free corticosterone levels were elevated by CRF, urocortin 1 and 3, but not by urocortin 2. The time courses of the CRF- and urocortin 1-induced responses were significantly prolonged as compared to those of the CRF(2) receptor ligands. The stimulatory changes evoked by CRF and urocortin 1 were present up to 4-6 h after injection, whereas the effects of urocortin 2 and urocortin 3 returned to baseline within 2.5 h after injection. Pre-treatment with the selective antagonist antisauvagine-30 (5.0 microg, i.c.v.) confirmed that the effects of urocortin 3 were CRF(2) receptor-mediated. The differential time course of the monoaminergic, neuroendocrine and behavioural effects of CRF and urocortin 1, as compared to urocortin 2 and urocortin 3, and the specific behavioural pattern induced by the CRF(2) receptor ligands, suggest a distinct role for CRF(2) receptors in the stress response.


Assuntos
Comportamento Animal/fisiologia , Monoaminas Biogênicas/metabolismo , Sistemas Neurossecretores/metabolismo , Receptores de Hormônio Liberador da Corticotropina/agonistas , Animais , Comportamento Animal/efeitos dos fármacos , Hormônio Liberador da Corticotropina/administração & dosagem , Humanos , Injeções Intraventriculares , Masculino , Camundongos , Sistemas Neurossecretores/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Urocortinas
14.
Eur J Neurosci ; 17(9): 1896-906, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12752789

RESUMO

Brainstem serotonergic neurotransmission is implicated in sleep regulation. However, the role of serotonin (5-HT) in forebrain regions in sleep-wake mechanisms is still unclear. Here, we have investigated, using a combined in vivo microdialysis/electroencephalogram method, the relationship between hippocampal 5-HT levels and sleep-wake behaviour in the rat. A clear-cut relationship was found between hippocampal 5-HT levels and vigilance state. The highest levels of 5-HT were observed during wakefulness, whereas a progressive decrease of 5-HT going from nonrapid eye movement sleep to rapid eye movement sleep was found. Sleep deprivation (SD) causes a transient enhancement of mood in depressed patients. Given the putative role of 5-HT in the aetiology of depression and the therapeutical efficacy of selective serotonin reuptake inhibitors in this illness, we also studied hippocampal 5-HT during 4 h of SD and during the subsequent recovery period. During the whole SD period, 5-HT levels were elevated substantially when compared to 5-HT levels during basal wakefulness. However, no changes in 5-HT levels and the relationship between hippocampal 5-HT and vigilance state were found during the subsequent recovery period. As SD is a potentially stressful experience and glucocorticoids are involved in the regulation of serotonergic neurotransmission and sleep, we investigated the effects of SD on free corticosterone levels. SD caused a marked rise in free corticosterone levels. However, the effects of SD on 5-HT seem not to be mediated by this hormone, because adrenalectomy did not affect the rise in hippocampal 5-HT during SD. We hypothesize that the elevated hippocampal 5-HT levels during SD may participate in the transient mood enhancing properties of forced wakefulness observed in depressed patients.


Assuntos
Hipocampo/metabolismo , Serotonina/metabolismo , Privação do Sono/metabolismo , Sono/fisiologia , Adrenalectomia/estatística & dados numéricos , Animais , Corticosterona/metabolismo , Eletroencefalografia/métodos , Espaço Extracelular/metabolismo , Masculino , Microdiálise/métodos , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia
15.
Eur J Neurosci ; 16(12): 2441-52, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12492439

RESUMO

Serotonin is important for adequate coping with stress. Aberrant serotonin function is implicated in the aetiology of major depression and anxiety disorders. Dysregulation of the hypothalamic-pituitary-adrenocortical axis, involving elevated corticotropin-releasing hormone (CRH) activity, also plays a role in these stress-related illnesses. Here we studied the effects of stress on hippocampal serotonin and the role of the CRH system using in vivo microdialysis. First, rats were subjected to a forced swim stress, resulting in a dramatic increase in hippocampal serotonin (1500% of baseline), which was associated with the occurrence of diving behaviour. The diving-associated increase in serotonin depended on activation of CRH receptors, as it was antagonized by intracerebroventricular pretreatment with D-Phe-CRH12-41. Secondly, the effects of intracerebroventricular administration of CRH and urocortin (0.03-1.0 microg) were studied. Both CRH and urocortin caused a dose-dependent rise in hippocampal serotonin (maximally 350% of baseline) and 5-hydroxyindoleacetic acid levels, suggesting the involvement of CRH receptor type 1. Because the effects of urocortin were prolonged, CRH receptor type 2 could play a role in a later phase of the neurotransmitter response. Experiments using adrenalectomized rats showed that CRH-induced serotonin changes were adrenally independent. These data suggest that the raphe-hippocampal serotonin system is able to mount, CRH receptor-dependent, responses to specific stressful situations that surpass the usually observed maximal increases of about 300% of baseline during stress and enhanced vigilance.


Assuntos
Hormônio Liberador da Corticotropina/análogos & derivados , Hipocampo/metabolismo , Vias Neurais/metabolismo , Núcleos da Rafe/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Serotonina/metabolismo , Estresse Fisiológico/metabolismo , Transmissão Sináptica/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Relação Dose-Resposta a Droga , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Ácido Hidroxi-Indolacético/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Injeções Intraventriculares , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/fisiopatologia , Núcleos da Rafe/efeitos dos fármacos , Núcleos da Rafe/fisiopatologia , Ratos , Ratos Wistar , Estresse Fisiológico/fisiopatologia , Natação/psicologia , Transmissão Sináptica/efeitos dos fármacos , Urocortinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...